Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Cancer Research Conference: American Association for Cancer Research Annual Meeting, ACCR ; 83(7 Supplement), 2023.
Article in English | EMBASE | ID: covidwho-20243306

ABSTRACT

CBD, an FDA approved drug for epilepsy, may have therapeutic potential for other diseases and is currently being tested for efficacy in cancer-related clinical trials. As the literature about CBD, especially in vitro reports, is often contradictory, increasing our understanding of its specific action on a molecular level will allow to determine whether CBD can become a useful therapy or exacerbates specific cancers in a context-dependent manner. Due to its relative lipophilicity, CBD is challenging to dispense at therapeutic concentrations;therefore, one goal is to identify cannabinoid congeners with greater efficacy and reduced drug delivery challenges. We recently showed that CBD activates interferons as a mechanism of inhibiting SARS-CoV-2 replication in lung carcinoma cells. As factors produced by the innate immune system, interferons have been implicated in both pro-survival and growth arrest and apoptosis signaling in cancer. Here we show that CBD induces interferon production and interferon stimulated genes (ISGs) through a mechanism involving NRF2 and MAVS in lung carcinoma cells. We also show that CBDV, which differs from CBD by 2 fewer aliphatic tail carbons, has limited potency, suggesting that CBD specifically interacts with one or more cellular proteins rather than having a non-specific effect. We also identified other CBD-related cannabinoids that are more effective at inducing ISGs. Taken together, these results characterize a novel mechanism by which CBD activates the innate immune system in lung cancer cells and identify related cannabinoids that have possible therapeutic potential in cancer treatment.

2.
CNS Spectrums Conference: Neuroscience Education Institute Congress, NEI ; 28(2), 2022.
Article in English | EMBASE | ID: covidwho-20232426

ABSTRACT

The proceedings contain 96 papers. The topics discussed include: practical pharmacotherapy for opioid use disorder in the age of fentanyl;can COVID-19 cause acute psychosis in pediatric patients? a case report;a survey of bullying experiences in a child and adolescent psychiatric clinic population;acute emergence of suicidal thoughts following Lemborexant initiation: an adverse reaction case report;assessing the unmet clinical need and opportunity for digital therapeutic intervention in schizophrenia: perspective from people with schizophrenia;rapid antidepressant effects and MADRS item improvements with AXS-05 (DEXTROMETHORPHAN-BUPROPION), an oral NMDA receptor antagonist in major depressive disorder: results from two randomized double-blind, controlled trials;targeting lncRNA NEAT1 impedes Alzheimers disease progression via MicroRNA-193a mediated CREB/BDNF and NRF2/NQO1 pathways;and impact of AXS-05 (DEXTROMETHORPHAN-BUPROPION), an Oral NMDA receptor antagonist, on Anhedonic symptoms in major depressive disorder.

3.
Natural Product Communications ; 18(4), 2023.
Article in English | EMBASE | ID: covidwho-2316742

ABSTRACT

Background: Viral infections pose some of the most serious human health concerns worldwide. The infections caused by several viruses, including coronavirus, hepatitis virus, and human immunodeficiency virus, are difficult to treat. Method(s): This review details the findings of a literature search performed on the antiviral properties of luteolin. The keywords engaged in the search are "virus" along with "luteolin." Results: Luteolin possesses antiviral properties, which is the basis for the current review. It is an important natural flavonoid with numerous important biological properties, including anti-inflammatory, immune regulatory, and antitumor effects, and is found in vegetables, fruits, and several medicinal plants. Recent studies have revealed that many traditional Chinese medicines that contain luteolin inhibit the replication of coronaviruses. Conclusion(s): Luteolin effectively inhibits the replication of coronavirus, influenza virus, enterovirus, rotavirus, herpes virus, and respiratory syncytial virus, among others. In particular, it prevents viral infection by improving the body's nonspecific immunity and antioxidation capacity and inhibiting many pathways related to virus infection and replication, such as MAPK, PI3K-AKT, TLR4/8, NF-kappaB, Nrf-2/hemeoxygenase-1, and others. It also regulates the expression of some receptors and factors, including hepatocyte nuclear factor 4alpha, p53, NLRP3, TNF-alpha, and interleukins, thereby interfering with the replication of viruses in cells. Luteolin also promotes the repair of damaged cells induced by proinflammatory factors by regulating the expression of inflammatory molecules. The overall effect of these processes is the reduction in viral replication and, consequently, the viral load. This review summarizes the antiviral effect of luteolin and the mechanism underlying this property.Copyright © The Author(s) 2023.

4.
Journal of Paediatrics and Child Health ; 59(Supplement 1):76, 2023.
Article in English | EMBASE | ID: covidwho-2314518

ABSTRACT

Background: COVID-19 is caused by SARS-CoV-2 and has is responsible for over 619 million infections and over 6.5 million deaths globally since identification in 2019. Infection during pregnancy is associated with increased adversity including increased risks of admission to intensive care, increased ventilatory support, preeclampsia, preterm birth and maternal death. Vaccination remains the best protection against severe disease. The majority of trials for novel or repurposed COVID-19 therapies including mRNA vaccinations have excluded pregnant or lactating women despite being an at-risk population. Broccoli sprout extract contains a naturally occurring phytonutrient sulforaphane which upregulates the Nrf2 transcription factor resulting in expression of antioxidant proteins, anti-inflammatory effects and has demonstrated anti-viral effects in-vitro . Severe COVID-19 results in excessive cytokine production resulting in a proinflammatory state with significant oxidative stress and multi-organ dysfunction with evidence of placental abnormalities in almost half of infected mothers. Method(s): CO-Sprout is a pilot, double blinded, placebo controlled randomised trial that is recruiting pregnant women ( n = 60) between 20 and 36 weeks completed gestation with COVID-19 diagnosed within 5 days. Participants are randomised to either broccoli sprout capsules (containing 21 mg sulforaphane) or identical placebo (microcrystalline cellulose) twice daily for 14 days. The primary outcome will be duration (days) of COVID-19 related symptoms and other exploratory outcomes including unplanned hospital admissions, birth outcomes, inflammatory markers, microbiome and placental changes. Patients are recruited through maternity departments at Monash Health and Jessie McPherson Private Hospital. Result(s): Trial in progress. Conclusion(s): Trial results to be published after trial completion.

5.
Current Opinion in Physiology ; 32 (no pagination), 2023.
Article in English | EMBASE | ID: covidwho-2300201
6.
Neuroendocrinology Letters ; 42(1):13-21, 2021.
Article in English | EMBASE | ID: covidwho-2299689

ABSTRACT

OBJECTIVES: The beneficial effects of ozone therapy consist mainly of the promotion of blood circulation: peripheral and central ischemia, immunomodulatory effect, energy boost, regenerative and reparative properties, and correction of chronic oxidative stress. Ozone therapy increases interest in new neuroprotective strategies that may represent therapeutic targets for minimizing the effects of oxidative stress. METHOD(S): The overview examines the latest literature in neurological pathologies treated with ozone therapy as well as our own experience with ozone therapy. The effectiveness of treatments is connected to the ability of ozone therapy to reactivate the antioxidant system to address oxidative stress for chronic neurodegenerative diseases, strokes, and other pathologies. Application options include large and small autohemotherapy, intramuscular application, intra-articular, intradiscal, paravertebral and epidural, non-invasive rectal, transdermal, mucosal, or ozonated oils and ointments. The combination of different types of ozone therapy stimulates the benefits of the effects of ozone. RESULT(S): Clinical studies on O2-O3 therapy have been shown to be efficient in the treatment of neurological degenerative disorders, multiple sclerosis, cardiovascular, peripheral vascular, orthopedic, gastrointestinal and genitourinary pathologies, fibromyalgia, skin diseases/wound healing, diabetes/ulcers, infectious diseases, and lung diseases, including the pandemic disease caused by the COVID-19 coronavirus. CONCLUSION(S): Ozone therapy is a relatively fast administration of ozone gas. When the correct dose is administered, no side effects occur. Further clinical and experimental studies will be needed to determine the optimal administration schedule and to evaluate the combination of ozone therapy with other therapies to increase the effectiveness of treatment.Copyright © 2021 Neuroendocrinology Letters.

7.
Coronaviruses ; 3(5):4-13, 2022.
Article in English | EMBASE | ID: covidwho-2275597

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a pathogenic coronavirus that emerged in late 2019, resulting in coronavirus disease (COVID-19). COVID-19 can be potentially fatal among a certain group of patients. Older age and underlying medical illness are the major risk factors for COVID-19-related fatal respiratory dysfunction. The reason for the pathogenicity of COVID-19 in the older age group remains unclear. Factors, such as coagulopathy, cytokine storm, metabolic disrup-tion, and impaired T cell function, may worsen the symptoms of the disease. Recent literature has indicat-ed that viral infections are particularly associated with a high degree of oxidative stress and an imbalance of antioxidant response. Although pharmacological management has taken its place in reducing the severity of COVID-19, the antioxidants can serve as an adjunct therapy to protect an individual from oxidative damage triggered by SARS-CoV-2 infection. In general, antioxidant enzymes counteract free radicals and prevent their formation. The exact functional role of antioxidant supplements in reducing disease symptoms of SARS-CoV-2 infection remains mostly unknown. In this review, the functional role of natural antioxidants in SARS-CoV-2 infection management is discussed in brief.Copyright © 2022 Bentham Science Publishers.

8.
European Respiratory Journal Conference: European Respiratory Society International Congress, ERS ; 60(Supplement 66), 2022.
Article in English | EMBASE | ID: covidwho-2269601

ABSTRACT

Introduction: Dysregulated immune responses are implicated in the pathogenesis of severe COVID19 and may be modulated by the transcription factor Nrf2. Hypothesis: Treatment with stabilised, synthetic sulforaphane (S-SFN)-an Nrf2 inducer-improves clinical status in hospitalised patients with suspected COVID19 pneumonia by curbing the inflammatory response. Method(s): Double-blind RCT of S-SFN (300mg, once daily, 14 days;EudraCT 2020-003486-19) in patients hospitalised with confirmed or suspected COVID19, in Dundee, UK. The primary outcome was the 7 point WHO Clinical Status scale at day 15. Blood samples were taken on days 1, 8 and 15 for measurement of 45 serum cytokines using the Olink Target48 panel. Key neutrophil functions were assessed including migration, phagocytosis and bacterial killing. Result(s): 133 participants were randomized (placebo n=68, S-SFN n=65) from Nov 2020 to May 2021. S-SFN treatment did not improve clinical status at day 15 (adjusted OR 0.87 95%CI 0.41-1.83). In serum, Nrf2 target TGFalpha was significantly increased at day 15 in those receiving S-SFN treatment compared with placebo (p=0.004;linear mixed effects model). Other targets implicated in cytokine storm, including IL6, IL1beta and TNFalpha, were unchanged. Patients receiving Tocilizumab (n=20) were excluded from exploratory analyses due to a strong impact upon IL6 levels, leading to significant increases at day 8 across the study population (p=0.015). S-SFN treatment did not significantly affect neutrophil function. Conclusion(s): S-SFN treatment modulated select Nrf2 targets but did not modulate key cytokines. Further analyses to delineate drug activity are ongoing.

9.
European Respiratory Journal Conference: European Respiratory Society International Congress, ERS ; 60(Supplement 66), 2022.
Article in English | EMBASE | ID: covidwho-2268922

ABSTRACT

As hyperbaric oxygen (HBO) has been shown to mitigate the COVID-19 symptoms, we were interested in studying whether HBO exposure affects expression of viral entry genes and innate immune genes in the air-liquid interface (ALI)-cultured human bronchial epithelial cells (HBECs) derived from normal individuals (NHBECs) and age-matched COPD patients (DHBECs), which were cultured under normoxia or daily exposure of 40-min hyperbaric oxygen (HBO) with 100% O2 at 2.5 ATA for 28 days in total. We found for the first time that HBO exposure differentially regulated mucociliary differentiation of HBECs by respectively decreasing and increasing expression of CGRP, MUC5AC, FOXJ1, NOTCH3 and HEYL in NHBECs and DHBECs, and respectively decreased and increased FOXO1 expression whereas increased and decreased NFE2L2 and NFKB1 expression in NHBECs and DHBECs, in association with respectively decreased and increased expression the SARS-CoV-2 entry genes ACE2 and 2 TMPRSS2 and the tight junction protein genes TJP1 and TJP2, and in association with respectively increased and decreased expression of the cell growth and inflammatory transcription factors SRF, c-FOS and TP63, as well as the TLR pathway genes TLR3, AKT1, IL-1B, IL-5, IL-6, IL-33, IRAK4 and NFKBIA in NHBECs and DHBECs. (Figure Presented).

10.
European Respiratory Journal Conference: European Respiratory Society International Congress, ERS ; 60(Supplement 66), 2022.
Article in English | EMBASE | ID: covidwho-2247909

ABSTRACT

Introduction: The transcription factor Nrf2 downregulates key inflammatory cytokines in COVID-19 (IL-6, IL-1b, COX-2 and TNF-a). We investigated the efficacy of S-SFN (stabilised sulforaphane, activator of Nrf2) to improve clinical outcomes in patients hospitalized with suspected COVID-19. Method(s): Randomized, double-blind, placebo-controlled trial, patients hospitalised with suspected or confirmed COVID-19, radiological pneumonia and a CURB65 score of >= 1 were randomized 1:1 to once-daily S-SFN 300mg or placebo for 14 days. The primary outcome was the 7-point WHO Clinical Status (CS) scale at day 15. Key secondary outcomes included time to clinical improvement, national early warning score (NEWS), oxygen and ventilation use, and mortality. Result(s): The trial was terminated due to futility after 133 patients had been enrolled (S-SFN, n=65 and placebo, n=68). 103 had PCR confirmed COVID-19 infection. S-SFN treatment was not associated with improved CS at day 15 (OR 0.87 95%CI (0.41-1.83, p=0.712). There was no difference in time to clinical improvement (HR 1.02 (0.70- 1.49)). S-SFN was not associated with a reduced length of hospital stay (6.2days vs 7.4days (S-SFN)). There were 26 deaths during the 29-day follow-up, 11 (16.2%) and 15 (23.1%) patients died in the placebo and S-SFN treated groups respectively (HR 1.45 (0.67-3.16)). There were no differences between treatment groups with respect to oxygen or ventilation free days. Adverse events were reported in 44.1% of placebo treated and 64.6% of S-SFN treated patients. Conclusion(s): S-SFN treatment did not improve day 15 clinical status in hospitalized patients with suspected or confirmed COVID-19 infection.

11.
Journal of Food and Drug Analysis ; 30(3):440-453, 2022.
Article in English | EMBASE | ID: covidwho-2067698

ABSTRACT

The jelly from achenes of Ficus pumila var. awkeotsang (FPAA) is a famous beverage ingredient in Taiwan. In this work, ficumarin (1), a new compound was obtained from its twigs (FPAT) and elucidated with comprehensive spectroscopic data. The biosynthetic origin was proposed from the p-coumaroyl-CoA pathway. Alloxanthoxyletin, betulinic acid, and catechin were identified as the major and active constituents responsible for relieving neutrophilic inflammation by FPAT. Among them, the most potent alloxanthoxyletin was found to interact with PRO350 and GLU377 of human INOSOX. Further, Nrf2 activating capacity of the FPAT fraction and its coumarins was confirmed. With the analysis of LC-MS/MS data and feature-based molecular networking, coumarins were found as the dominant and responsible components. Notably, alloxanthoxyletin increased Nrf2 expression by up to 816.8 +/- 58% due to the interacting with the VAL561, THR560 and VAL420 residues of 5FNQ protein. COVID-19 Docking Server simulation indicated that pyranocoumarins would promisingly interfere with the life cycle of SARS-CoV-2. FPAT was proven to exert. Copyright © 2022 Taiwan Food and Drug Administration.

12.
Cancer Research ; 82(12), 2022.
Article in English | EMBASE | ID: covidwho-1986495

ABSTRACT

As of November 2021, there were 21 million confirmed active cases of COVID-19, including 77,016 patients in serious or critical condition (virusncov.com). However, there are no effective oral drugs for the treatment of severe COVID 19 patients. We here discuss the mechanism of action for Proxalutaminde to treat mild, moderate and severe COVID-19 Patients. Cellular entry and infection of SARS-CoV-2 virus are mediated by two key proteins in host cells, angiotensin converting enzyme 2 (ACE2), a host transmembrane protein, providing the binding sites for SARS-CoV-2 on the host cell surface, and transmembrane protease serine 2 protein (TMPRSS2), priming the S protein of SARS-Cov-2 to facilitate the viral entry into the host cells. Both ACE2 and TMPRSS2 proteins are regulated by androgen receptor (AR) signaling. Previously, Proxalutamide has been reported to downregulate the expression of ACE2 and TMPRSS2 in cells derived from prostate, lung cancer and normal lung epithelial cells. In this study, we demonstrate that Proxalutamide inhibited the infection of SARS-COV-2 wild type, alpha and delta variants, with IC50s of 69, 48 and 39 nM, respectively. Moreover, Proxalutamide reduced SARS-COV-2 viral load in outpatients with COVID-19 (82% viral RT-PCR negative rate in active group vs. 31% in placebo group after treatment for 7 days (p-value<0.0001). Severe COVID-19 disease leads to cytokine storm resulting in pulmonary inflammation and extensive damage in lung and other organs. Anti-inflammatory drugs, including Baricitinib and dexamethasone, have shown limited clinical benefit for hospitalized COVID-19 patients. Therefore, more effective drugs are in urgent need for patients suffering from severe COVID-19. Recently, Proxalutamide has been reported to reduce the mortality rate (HR=0.16) and lung injury (by 57%, active drug vs placebo groups) in hospitalized patients with COVID-19 in an IIT phase III study. We presented here the mechanism of action of Proxalutamide for targeting cytokine storm in severe COVID-19 patients. Proxalutamide was demonstrated to activate nuclear factor erythroid 2-related factor 2 (Nrf2) in macrophages, which stimulates the antioxidant response element (ARE) for reducing cytokine storm-induced organ damage in COVID-19. In addition, Proxalutamide inhibited TNF alpha and IL-6 expression and blocked INF gamma signaling by downregulating STAT1 expression in immune cells. Importantly, Proxalutamide reduced inflammatory cells in lungs in a Poly (I:C), pseudoviral induced-lung injury animal models. Further, Proxalutamide decreased C-reactive protein, D-Dimer and improved lymphocyte count, biomarkers for COVID-19 progression in clinical studies. Together, these results provide a strong rationale for the treatment of severe COVID-19 patients with Proxalutamide.

13.
Thai Journal of Pharmaceutical Sciences ; 46(2):137-148, 2022.
Article in English | EMBASE | ID: covidwho-1913271

ABSTRACT

Introduction: Berberis tinctoria an evergreen shrub, endemic and predominantly found at a higher altitude of the Nilgiri Biosphere Reserve, India. This leaf and fruit are edible, which are also used in homeopathic remedies for countless illnesses. Objectives: B. tinctoria with diverse ethnomedicinal uses was focused in the prevailing study to detailed the phytochemical and pharmacological properties for further imminent research in this species. Materials and methods: Published data in this review were all gathered from the online bibliographical databases: PubMed, Elsevier, Scopus, Google Scholar, Web of Science, and local ethnic community peoples of Kurumba and Toda. Results: B. tinctoria was used as a Ayurvedic and homeopathy medicine by the tribal communities. The previous findings of B. tinctoria were used for skin diseases, wound healing, inflammatory, menorrhagia, diarrhea, jaundice, and a snakebites. The phytochemical studies revealed that secondary metabolites, antioxidants, and antimicrobial activity as a result of major alkaloid isoforms of berberine, berbamine, jatrorrhizine, etc. Conclusion: B. tinctoria is an important plant due to the presence of bioactive phytochemicals, especially berberine protoberberine group of benzylisoquinoline. As a result of its diverse ethnopharmacological importance, as well as numerous commercial products and novel bioactive compounds yet to be discovered for future drug discovery and development.

14.
Current Opinion in Toxicology ; 30, 2022.
Article in English | EMBASE | ID: covidwho-1859464
SELECTION OF CITATIONS
SEARCH DETAIL